
LEGACY RESEARCH
Dynamic mapping of fire regimes, past present and future
Work Package 1 - To understand how to best use and manage fire to protect people, property and the environment in the future, we need to understand historic patterns. This research expands our knowledge for managing hazard reduction burns, lessening the impacts of planned burns, and understanding how they can be better used to manage future fire patterns under a changing climate.
Key Outcome: Fire managers will have planning tools to help plan prescribed burns and understand changes in fire risk in the future.
The research team collated, mapped and analysed historical fire data to understand patterns of intensity, severity, spread, return interval and smoke dispersion, with a focus on changes in climate. They provided fire managers with a set of evidence-based planning tools to aid in understanding of fire regimes and weather to improve the use of fire for risk management.
What they did:
Developed an online tool that uses historic fire and vegetation data to aid in hazard reduction burn planning
Analysed historic fire data to improve our understanding of fire return intervals across NSW ecosystems
Analysed climate and fire data to understand fuel moisture’s role in changing fire regimes
Developed interactive tools to explore fire and climate trends, and trade-offs in emissions from planned burns and wildfires
KEY PUBLICATIONS (ALPHABETICALLY BY LEAD AUTHOR)
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J. & Boer, M. M. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2, 8. https://doi.org/10.1038/s43247-020-00065-8
Barker, J. W., Price, O. F. & Jenkins, M. E. (2021). Patterns of flammability after a sequence of mixed-severity wildfire in dry eucalypt forests of southern Australia. Ecosphere, 12, e03715. https://doi.org/10.1002/ecs2.3715
Boer, M. M., Resco De Dios, V. & Bradstock, R. A. (2020). Unprecedented burn area of Australian mega forest fires. Nature Climate Change, 10, 171-172. https://doi.org/10.1038/s41558-020-0716-1
Boer, M. M., Resco De Dios, V., Stefaniak, E. Z. & Bradstock, R. A. (2021). A hydroclimatic model for the distribution of fire on Earth. Environmental Research Communications, 3, 035001. https://doi.org/10.1088/2515-7620/abec1f
Bowman, D. M. J. S., Williamson, G. J., Gibson, R. K., Bradstock, R. A. & Keenan, R. J. (2021). The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management. Nature Ecology & Evolution, 5, 1003-1010. https://doi.org/10.1038/s41559-021-01464-6
Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R. A. (2021). Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell & Environment, 44, 347-355. https://doi.org/10.1111/pce.13916
Bradstock, R. A., Nolan, R. H., Collins, L., Resco De Dios, V., Clarke, H., Jenkins, M., Kenny, B. & Boer, M. M. (2020). A broader perspective on the causes and consequences of eastern Australia's 2019–20 season of mega-fires: A response to Adams et al. Global Change Biology, 26, e8-e9. https://doi.org/10.1111/gcb.15111
Clarke, H., Gibson, R., Cirulis, B., Bradstock, R. A. & Penman, T. D. (2019). Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia. Journal of Environmental Management, 235, 34-41. https://doi.org/10.1016/j.jenvman.2019.01.055
Clarke, H., Nolan, R. H., De Dios, V. R., Bradstock, R., Griebel, A., Khanal, S. & Boer, M. M. (2022). Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nature Communications, 13, 7161. https://doi.org/10.1038/s41467-022-34966-3
Clarke, H., Penman, T., Boer, M., Cary, G. J., Fontaine, J. B., Price, O. & Bradstock, R. (2020). The Proximal Drivers of Large Fires: A Pyrogeographic Study. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00090
Collins, L., Bradstock, R. A., Clarke, H., Clarke, M. F., Nolan, R. H. & Penman, T. D. (2021). The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environmental Research Letters, 16. https://doi.org/10.1088/1748-9326/abeb9e
Collins, L., Clarke, H., Clarke, M. F., Mccoll Gausden, S. C., Nolan, R. H., Penman, T. & Bradstock, R. (2022). Warmer and drier conditions have increased the potential for large and severe fire seasons across south-eastern Australia. Global Ecology and Biogeography, 31, 1933-1948. https://doi.org/10.1111/geb.13514
Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan M. D., & Williamson, G. J. (2022). “Global increase in wildfire risk due to climate-driven declines in fuel moisture”. In: Global Change Biology 16006. DOI:10.1111/gcb.16006
Ellis, T. M., Bowman, D. M. J. S. & Williamson, G. J. (2024). Global variation in ecoregion flammability thresholds. Ecography, 2024, e07127. https://doi.org/10.1111/ecog.07127
Furlaud, J. M., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. (2021). Bioclimatic drivers of fire severity across the Australian geographical range of giant Eucalyptus forests. Journal of Ecology, 109, 2514-2536. https://doi.org/10.1111/1365-2745.13663
Linley, G. D., Jolly, C. J., Doherty, T. S., Geary, W. L., Armenteras, D., Belcher, C. M., Bliege Bird, R., Duane, A., Fletcher, M.-S., Giorgis, M. A., Haslem, A., Jones, G. M., Kelly, L. T., Lee, C. K. F., Nolan, R. H., Parr, C. L., Pausas, J. G., Price, J. N., Regos, A., Ritchie, E. G., Ruffault, J., Williamson, G. J., Wu, Q. & Nimmo, D. G. (2022). What do you mean, ‘megafire’? Global Ecology and Biogeography, 31, 1906-1922. https://doi.org/10.1111/geb.13499
Mccoll-Gausden, S. C., Bennett, L. T., Ababei, D. A., Clarke, H. G. & Penman, T. D. (2022). Future fire regimes increase risks to obligate-seeder forests. Diversity and Distributions, 28, 542-558. https://doi.org/10.1111/ddi.13417
Mccoll-Gausden, S. C., Bennett, L. T., Clarke, H. G., Ababei, D. A. & Penman, T. D. (2022). The fuel–climate–fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change? Global Change Biology, 28, 5211-5226. https://doi.org/10.1111/gcb.16283
Nolan, R. H., Bowman, D. M. J. S., Clarke, H., Haynes, K., Ooi, M. K. J., Price, O. F., Williamson, G. J., Whittaker, J., Bedward, M., Boer, M. M., Cavanagh, V. I., Collins, L., Gibson, R. K., Griebel, A., Jenkins, M. E., Keith, D. A., Mcilwee, A. P., Penman, T. D., Samson, S. A., Tozer, M. G. & Bradstock, R. A. (2021). What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire, 4. https://doi.org/10.3390/fire4040097
Nolan, R. H., Collins, L., Leigh, A., Ooi, M. K. J., Curran, T. J., Fairman, T. A., Resco De Dios, V. & Bradstock, R. (2021). Limits to post-fire vegetation recovery under climate change. Plant, Cell & Environment, 44, 3471-3489. https://doi.org/10.1111/pce.14176
Resco De Dios, V. & Nolan, R. H. (2021). Some Challenges for Forest Fire Risk Predictions in the 21st Century. Forests, 12. https://doi.org/10.3390/f12040469
Williamson, G. J., Ellis, T. M. & Bowman, D. M. J. S. (2022). Double-Differenced dNBR: Combining MODIS and Landsat Imagery to Map Fine-Grained Fire MOSAICS in Lowland Eucalyptus Savanna in Kakadu National Park, Northern Australia. Fire, 5. https://doi.org/10.3390/fire5050160